Contents

1. What Does This Report Contain? ... 3
2. Overview of the Product ... 3
3. Executive Summary .. 4
4. Detailed Review ... 7
 4.1 Content Quality .. 8
 4.2 Pedagogical Alignment ... 10
 4.3 Technology and Design .. 16
Appendix ... 19
1. What Does This Report Contain?

The section, 'Overview of the Product', provides a brief description of the product and its key features to give the context for the evaluation. The two sections following that present the findings from the evaluation. The Executive Summary provides the overall rating and offers implications in terms of benefits and limitations for teachers and learners. The Detailed Review section provides an in-depth evaluation of the product, categorized under three dimensions (or constructs) – Content Quality, Pedagogical Alignment, and Technology & Design. For each dimension, the product is reviewed on the criteria along with explanations for the rating, and grouped into clusters. Specific examples have been provided in this report to support and elaborate on the evaluation ratings.

The terms, ‘Exemplary’, ‘Valuable’, and ‘Potential to Improve’, used in the report refer to the rating scale for evaluating the product.

- **'Exemplary'** indicates that the product has been designed as per recommended learning theories and research-based evidence.
- **'Valuable'** indicates limited adherence of the product’s design to the recommended learning theories and research-based evidence.
- **'Potential to Improve'** indicates unsatisfactory or lack of adherence of the product’s design to the learning theories and research-based evidence.

2. Overview of the Product

This report evaluates the product, Mindspark, Mathematics (Grades 6-8). Mindspark is an adaptive, self-learning platform aimed at providing a unique learning path to each learner based on his or her needs. It is designed using data on learners’ learning gaps and difficulties. It consists of a series of questions, activities and challenges for the learner along with corresponding feedback. Adaptivity is based on learner profile and performance.
Overall, the product is aligned with national standards with excellent content and pedagogical strategies. This product might be extremely useful for learning and applying concepts in Mathematics for grades 6-8. The product might be an effective supplementary tool for teachers to support learners’ learning and monitor their progress.

Potential benefits of this product

Learners will likely be able to:
- Develop correct mathematical concepts on their own, which will help them solve various types of mathematics questions.
- Gradually solve difficult or challenging questions as prior conceptions get thoroughly addressed.
- Get motivated to learn the content with the help of the “Effort mode”, especially learners with low achievement levels.

Teachers will likely be able to:
- Use Mindspark content as practice sessions/homework since it’s aligned with national standards and most of the units/topics/chapters were as per NCERT books, covering Math skills recommended by NEP 2020.
- Track class performance along with individual learner’s progress. Thus, they will likely use the product to create and assign homework for learners.

Potential limitations of this product

Learners will likely face the following issues:
- Get disengaged or drop the unit due to lack of conversational style in presentation, lack of sufficient scaffolding, lack of self-paced navigation.
- Get frustrated as the recovery from error is missing in the product.
- Find difficulty in learning new topics by themselves.
- Find some examples irrelevant since these might not be relatable to rural area learners.
Mindspark (Grades 6-8): Summary of Review Ratings by Criteria

Content Quality: Exemplary

<table>
<thead>
<tr>
<th>C1 Content accuracy</th>
<th>Not applicable for this product as it does not contain separate content videos or text; instead “content” in the product is entirely in the form of questions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 Correctness and clarity in assessment</td>
<td>All the assessment questions and their solutions are factually correct and unambiguous.</td>
</tr>
<tr>
<td>C3 Language comprehensibility</td>
<td>The sentences and vocabulary are easy to understand and the phrasing is simple.</td>
</tr>
<tr>
<td>C4 Mathematics skill coverage</td>
<td>Skills recommended by the NEP like graphical representation, abstract concepts, understanding shapes & patterns are covered well.</td>
</tr>
<tr>
<td>C5 Curriculum alignment</td>
<td>The content is aligned to NCERT and logically sequenced.</td>
</tr>
<tr>
<td>C6 Inclusivity in representation of learners</td>
<td>An attempt has been made to include representation of relevant sections of Indian society across gender, religion, socio-economic class, etc. However, the rural sections of society have not been adequately represented.</td>
</tr>
</tbody>
</table>

Pedagogical Alignment: Exemplary

<table>
<thead>
<tr>
<th>P1 Constructivist approach</th>
<th>Some elements of constructivist approach are present such as, a well-sequenced set of questions, and activities where the learner gets an opportunity to experiment. However, this is not consistent across all units.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2 Addressing learning gaps/ alternate conceptions</td>
<td>Through the questions, all different possibilities have been explored and explained, hence addressing all potential learning gaps.</td>
</tr>
<tr>
<td>P3 Content in context</td>
<td>Relevant and sufficient context is provided across the product.</td>
</tr>
<tr>
<td>P4 Learner scaffolding</td>
<td>Effective learner scaffolds such as diagrams, animations, and drop boxes are provided in some units, although they were inconsistent across topics.</td>
</tr>
<tr>
<td>P5 Cognitive engagement</td>
<td>Appropriate visual cues are provided, although conversational style is still formal, and in third person.</td>
</tr>
<tr>
<td>P6 Motivational features</td>
<td>The product includes a comprehensive set of motivational features that are well integrated and prompt the learners to interact further with the content. E.g., Sparkies, leaderboards, badges etc.</td>
</tr>
</tbody>
</table>
Technology and Design: Valuable 😊

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8 Learning objective – assessment alignment</td>
<td>All learning objectives have assessment questions aligned at corresponding cognitive levels.</td>
</tr>
<tr>
<td>P9 Pedagogy – assessment method alignment</td>
<td>The pedagogical strategies used in the product and the assessment methods used are aligned to each other across all topics.</td>
</tr>
<tr>
<td>P10 Cognitive levels covered</td>
<td>HOTs are sufficiently addressed in the content, examples or activities.</td>
</tr>
<tr>
<td>P11 Feedback quality</td>
<td>Appropriate feedback is provided through complete explanations and visuals, although it lacks consistency across topics.</td>
</tr>
<tr>
<td>P13 Adaptivity</td>
<td>The product is assessment adaptive, and the adaptivity is determined based on learner profile and performance.</td>
</tr>
<tr>
<td>P14 Teacher support</td>
<td>Adequate teacher support is provided, where they can customize and assign students relevant material.</td>
</tr>
</tbody>
</table>

Executive Summary

Summary of Review Ratings by Criteria

EdTech Tulna Evaluation Report: Mindspark, Mathematics Grades 6-8, January 2021

Not to be reproduced/ copied without permission
4. Detailed Review

4.1 Content Quality 🧐
Content Accuracy and Clarity ... 8
Alignment to National Standards .. 9
Inclusivity in Content Representation .. 10

4.2 Pedagogical Alignment 😃
Learner-Centred Approach .. 10
Enhancing Learner Experience ... 12
Assessment of Learning ... 14
Adaptivity ... 15
Teacher Support .. 16

4.3 Technology & Design 😊
User Interface Design ... 16
Affordances that Facilitate Learning ... 17
4.1 Content Quality

Content Quality measures the accuracy and content/skill coverage for the grade targeted and the specific domain. The criteria in this dimension focus on content accuracy and clarity, alignment to national standards, and inclusivity in content representations.

4.1.1 Content Accuracy and Clarity

Note: This product consisted of a series of questions for the learner and corresponding feedback based on the learner’s response. The “content” in the product was entirely in the form of “questions” and it did not contain separate “content” videos or text. Hence, the criterion, “Content Accuracy” (C1), is not rated here.

Correctness and clarity in assessment (C2) is rated Exemplary. Overall, the content i.e., assessment questions and their solutions were factually correct. The wording of the assessment questions conveyed the intended meaning and clearly stated what was expected from the learner. The solutions provided were complete with appropriate explanations.

Illustrative example: Topic: Identifying acute, obtuse and reflex angles, Grade 6

The diagram clearly indicated the angle in question. Question wording and answers options are clearly stated (figure) and solution was complete with appropriate explanation with why acute angle answer is correct.
Language Comprehensibility (C3) is rated Exemplary. The content was easy to comprehend for learners in grades 6-8 since simple, short, and easy-to-understand sentences had been used. Even in the case of complex problems, the phrasing and sentences were simple, sequenced accurately so that the learner could follow the question as well as the solution.

Illustrative example: Topic: Understanding idea of congruence, Grade 7

In the given problems two arguments were shown to identify congruence in a circle. The statements in the argument were simple and accurately sequenced so that the question was easy to comprehend for learners. The solution was also explained clearly using appropriate diagrams to further provide clarity for the solution.

4.1.2 Alignment to National Standards

Mathematics skill coverage (C4) and Curriculum alignment (C5) are rated Exemplary. Major topics were chunked appropriately into small subtopics and the conceptual understanding of the topics was progressively built through a series of questions. The review team observed that all the topics and subtopics covered were aligned with the content present in NCERT textbooks for Grades 6-8. The subtopics were scaffolded as per their difficulty levels and prerequisite knowledge required within each topic. Similarly, the team observed that the content covered all the Mathematics skills recommended by NEP 2020 and NCF, specifically for the upper primary stage (Grades 6-8) such as understanding abstract concepts like algebraic expressions, triangles, and decimals. It also used graphical representations to explain topics like data handling.
4.1.3 Inclusivity in Content Representation

Inclusivity in the representation of learners (C6) is rated Valuable. The product attempted to include content relatable to diverse groups of learners in terms of gender, race, socio-economic class, religion, looks, etc. However, the examples mostly targeted urban and semi-urban areas and learners from rural areas might not be able to find connectivity with real-life examples.

Illustrative example: Topic: Interpretation of bar graphs, Grade 6

Although there were examples provided of sweets like gulab jamun and jalebi, which are popular, there were also instances of bird names like kiwi and parakeet being used, which many learners might not be aware of.

4.2 Pedagogical Alignment

Pedagogical Alignment includes criteria focused on adaptivity, learner-centred pedagogy, enhancing learner experience, assessment of learning, and teacher support. It measures the extent of alignment of the pedagogical strategies with national educational policies, Learning Sciences theories and design principles to create a meaningful learning experience.

4.2.1 Learner-Centred Approach

Constructivist approach (P1) is rated Valuable. The product’s design provided many opportunities for the learners to construct their knowledge of various math concepts. However, there was inconsistency in the implementation of constructivist approaches across various learning units. In geometry topics, more activities were seen to promote the construction of knowledge compared to topics in algebra.
One of the activities that helped learners construct their knowledge was the presentation of a series of questions and answers within a topic. For example, in the topic ‘Identifying Types of Angles’, the flow of the activity moved from the explanation of various parts of an angle to various regions of an angle, and then types of angles (obtuse, acute, and reflex). The product first asked the learner to only identify different orientations of angles, step-by-step. If these were answered correctly, the questions moved to a place where they had to express their reasoning and justify why a certain answer was correct or wrong. This helped learners to gain insight into the topic by either answering questions or reading through solutions. If learners' answers were incorrect then learners were guided for revision through “Effort mode” (i.e., a specific button appeared on the Mindspark screen). In Effort mode, similar questions appeared multiple times addressing the same mathematics concept (if answered incorrectly) till the learner got the correct answer. This might help learners to self-reflect and correct errors by themselves. However, such activities were not always present.

Illustrative example: Topic: Congruence of triangle, Grade 7

In this learning unit, learners were given an activity to select shapes, rotate them and fit on the shapes in question to find congruence. This was a useful activity for building the concept of congruence. Similarly after solving problems correctly, the game of “congruence card” was given to further strengthen the concept by allowing learners to match shapes through drag, rotate and drop buttons. However, in the same unit, there were questions where learners had to check congruence by merely looking at given Diagrams, which may be difficult to guess.

Such activities that helped learners construct their knowledge were particularly absent in algebra. In most topics in algebra, learners were given a series of equation-based questions and the solutions were directly shown.

Illustrative example: Topic: Word problems of speed, time, distance, Grade 8

For calculation of time/distance or speed in the given problem, there was no facility for learners to visualize the problem step-wise and decide which parameter to calculate and which formula to apply. Direct solution steps were shown for selected answers (right/wrong). This might lead to either rote learning of solutions or learners may find such problems difficult to solve.
Addressing learning gaps/ alternate conceptions (P2) is rated Exemplary. In most of the topics, the learning gaps were addressed through various diverse examples.

Illustrative example: Topic: Problems based on operations on large numbers, Grade 6

The problem explained the remainder theorem for one of the answers where learners could get mixed up between whether the correct answer was 299 or 300. The question was as follows: “A truck can carry a maximum of 273 gunny sacks of wheat. During the harvest season, the entire crop consisted of 81653 gunny sacks. The crop had to be transported to the Food Corporation of India. How many rounds would the truck have to make to transport the entire crop?” In this question, although the quotient comes out to be 299, there was an additional remainder of 26 sacks remaining, for which the truck would have to make one more round. Hence, such edge cases might help the learner understand the relevance of remainder in this context.

Illustrative example: Topic: Basic understanding of volume as a measure of capacity, Grade 8

In this unit, common learning gaps around volume were addressed through various examples. In the initial questions, there was a strong focus on establishing how volume was different from the surface area with the help of 3D examples as well as by showing differences in units for length, surface area, and volume. By showing animated feedback on how one solid had less/more volume than the other, misconceptions around comparing volumes were resolved.

4.2.2 Enhancing Learner Experience

Content in context (P3) is rated Exemplary. The real-life problems used in the product were based on topic requirements. For example, for topics from algebra such as the use of brackets in distributive property or use of divisibility by 9, the context was not required. However, the local context was used where necessary as illustrated below.

Illustrative example: Topic: Interpretation of bar graphs, Grade 6

Examples used to calculate values based on graphs included familiar Indian mithai names (e.g., ladoo, barfi, jalebi, etc.) to connect learners with real-life applications.
Illustrative example: Topic: Problems on profit and loss, Grade 8

Most of the examples in profit and loss topics were connected to real-life situations such as buying and selling of speakers, handkerchiefs, etc. Two examples are below:

Q: Sushma sold a speaker at Rs. 228. She bought 3 speakers in a year at Rs. 240 each a year before. What was her loss percentage in a year?
Q: A shopkeeper buys handkerchiefs for a total of Rs. 400. She sells all handkerchiefs at Rs. 384. What was her loss per handkerchief sold?

Learner scaffolding (P4) is rated Valuable. Effective learner scaffolds such as diagrams, animations, and drop boxes (Figure 1) for step-wise problem solving were provided in some units to simplify learning tasks. However, inconsistency was observed in scaffolds across various units.

Illustrative example: Topic: Triangle and triangle properties, Grade 7

The question was to calculate the exterior angle. The solution steps were provided and for each step, a dropbox with options was given (Figure 1). The drop boxes, thus simplified tasks by providing hints towards solutions.

Figure 1. Calculation of angle

Illustrative example: Topic: Speed, time, distance, Grade 8

Hints were provided in the form of formulas that further simplified the problem-solving process and the learning goals could be achieved without getting stuck at a particular point.

The topics were chunked well from easy to difficult levels so that learners could progressively learn the concepts. Remedial work was provided as a scaffold when the learner answered many questions incorrectly. This was seen in some topics such as “Understanding and using the exterior angle property of a triangle”. However, there were not many instances of such scaffolds. In most topics, direct solution steps were provided similar to textbook explanations. Thus learner scaffolding was missing in those topics.
Cognitive engagement (P5) is rated Valuable. In this product there were many visual cues provided in the form of angles in colors or animations to highlight angle combinations (Figure 2), overlapping of shapes to explain congruence concepts, etc.

![Figure 2. Visual cues for cognitive engagement](image2)

In the topic of interpretation of bar graphs, appropriate visual cues were used at multiple points to show the exact values of the graphs and highlight the differences. In equivalence of fractions, visual cues such as animations and highlighted text were used to display equivalence between two fractions.

But the personalized conversational style was not seen in any topic and formal book language was used for question and solution presentation. Questions were still in the third person and did not necessarily invite the learner to engage deeply with the problem.

Motivational features (P6) is rated Exemplary. The product had noteworthy motivational features for the learners. There were features like Sparkies, challenge questions, effort mode, leaderboards, and rewards like profit guru, graph master, etc. These features prompted the learner to further explore and engage with the content. Learners received “Profit guru” title after answering profit and loss questions successfully.

![Figure 3. Motivational feature of Mindspark](image3)

4.2.3 Assessment of Learning

Learning objective – assessment alignment (P8) is rated Exemplary. The questions in each topic and concept were very well aligned with the stated learning objectives.
Pedagogy-assessment method alignment (P9) is rated Exemplary. The product mostly contained direct assessment questions in increasing order of difficulty level. There were few activities that allowed learners to experiment with figures and learn the concept (e.g., the concept of congruence). There were also assessment questions to find congruence by clicking on figures to decide congruence. This showed the alignment between assessment and pedagogy.

Cognitive levels covered (P10) is rated Exemplary. The questions were present at various cognitive levels, ranging from recall to analyze level. The majority of the questions were present at an ‘apply’ level of Bloom’s Taxonomy.

Feedback Quality (P11) is rated Valuable. The feedback provided to the learners were appropriately done through animations, visual representations, and step-by-step explanations and the solutions were comprehensive for some topics. However, the review team observed that the product’s design missed two critical aspects described below.

1. Maintaining consistency of feedback quality across all questions and topics
The quality of feedback varied across various questions. In some questions, the feedback was binary. For example, in problems based on operations of large numbers, the first few questions had only the answer written. No steps or additional explanations were provided. In challenge questions, there was no feedback provided for the first two attempts even if the answer was incorrect.

2. Providing constructive feedback to the learner based on their response
In some of the topics where the step-wise solutions were provided and especially in remedial work, the options were given to learners to choose steps. Based on the steps taken feedback was provided. But the feedback was not constructive since the same feedback was given for both right or wrong steps.

4.2.4 Adaptivity

Adaptivity (P13) is rated Exemplary. The product was assessment adaptive. Adaptivity was determined based on performance and learner profile. Question difficulty and type of questions changed based on previous answers. Such adaptation was effectively done. However, the product’s design was such that adaptivity did not consider learners’ interaction (e.g., answers based on a guess, time spent on each question, etc.). As a result, sometimes the accuracy still turned out to be 50% despite guessing all answers and that failed to capture the learning gaps effectively (for both the learner and teacher). Despite this shortcoming, the review team has rated this criterion as exemplary due to the overall effectiveness of the product’s adaptivity.
4.2.5 Teacher Support

Teacher support (P14) is rated Exemplary. Robust mechanisms to create homework and worksheets were available. Teachers could create and customize their own questions or use textbook questions along with Mindspark questions. Teachers had the option to choose individual topics for particular learners and curate personalized learner journeys. The review team observed that the teacher dashboards tracked learner’s progress and monitored individual student performance (explained in further detail in section 4.3.2 under criteria T5).

4.3 Technology and Design

Technology & Design measures how well the technological affordances and the user interface design integrate with the pedagogy and context to promote a meaningful learning experience for all learners. The criteria in this dimension focus on user interface design and affordances that facilitate learning.

4.3.1 User Interface Design

Interface design: Enable intuitive use (T1) is rated Exemplary. The user interface followed Norman’s design principles for visibility, affordance, consistency, and mapping. The interface clearly conveyed how learners needed to perform actions.

Interface design: Assess consequences of an action (T2) is rated Valuable. The interface provided appropriate responses to the learner’s actions through appropriate text or visuals. However, the user interface did not facilitate recovery from error. The error handling was not effective as there were no warnings or prompts when the user performed certain actions like ‘Logout’ or ‘Done with this topic’. These actions would be problematic when done unintentionally by the learner. There were also instances where error messages were either displayed as Null or sentences that were not meaningful.
Learner navigation and pace (T3) is rated Valuable. Based on the learner’s response to questions, the product decided the learner’s pathway but did not always give the learner enough control over their learning process. The learner was prevented from going back and forth within the learning unit as well as across different learning units. Once a learner completed one unit of a chapter, the product allowed the learner to go to the next unit, but the learner could move back to the previous learning unit. Similarly, for a given learning unit, the learner could attempt the next question and there was no back button to go to the previous question.

Universal design (T4) is rated Valuable. Several Web Content Accessibility Guidelines (WCAG) principles have been followed in the product. For example, content is presented in multiple ways using text, diagrams, and simulations. Content is allowed to appear and be operated in predictable ways. However, the product did not have a low entry barrier for diverse learners such as those with special needs or different abilities. Non-keyboard alternatives enabling a user to provide inputs were missing (e.g., an on-screen keyboard). A set of specific questions were observed in coordinate geometry which had simulations with flashing pixels and could potentially trigger seizures and was thus violating WCAG’s operable principle.

4.3.2 Affordances that Facilitate Learning

| Analytics for learners’ progress (T5) | Tools to support problem-solving (T6) | Meaningful interactivity (T7) |

Mindspark provided an actionable teacher dashboard enabling the teacher to track individual learner progress. Affordance for learning support was evaluated based on analytics for learners’ progress, interactivity affordance of the interface, and inclusion of tools to support Problem-solving.

Analytics for learners’ progress (T5) is rated Valuable. The product had a teacher dashboard which was great in terms of the information it presented to the teacher and could help guide a teacher’s instruction in the classroom. For example, it showed every learner’s learning trail including the topics and questions that they had solved as well as individual performance on different topics. The teacher could also see the overall class performance on various topics and subtopics. However, it did not provide sufficient guidance to the teacher on identifying where the learner needed to put in the effort or where additional support should be provided to make progress. For example, the dashboard did not allow teachers to assign different topics or questions, or activities to specific sets of learners based on their performance or interaction with the system. However, the teacher could activate or deactivate a particular topic for the entire class.

The student dashboard lacked a display of the learner’s progress. Direct navigation from the dashboard to an in-progress topic was not provided. However, topic-wise dashboards provided indicators for accuracy, what a learner had mastered, and access to completed questions with explanations.
The student dashboard lacked a display of the learner’s progress. Direct navigation from the dashboard to an in-progress topic was not provided. However, topic-wise dashboards provided indicators for accuracy, what a learner had mastered, and access to completed questions with explanations.

Tools to support problem-solving (T6) is rated Exemplary. For relevant learning units like co-ordinate geometry, robust tool support like a simulated compass, protractor, and rulers had been provided. The tools were intuitive to use, excellently designed, and supported by helpful visual aids. However, there were several topics like triangles where relevant tools could have been provided. But overall this shortcoming would not hamper the learning process.

Meaningful interactivity (T7) is rated Exemplary. The product was rated as exemplary on interactivity affordance of the interface. In many places, whenever required, there were meaningful activities where the learner could interact with the system. They were implemented using different means like text inputs, drag and drop, etc. A good example of interactivity was in the topic of the calculation of time. The speed-distance tabular form was used and learners needed to fill the blanks for different quantities. There was also the use of drag and drop features. For example, dragging shapes to find congruence in figures that correctly explained the concept of congruence.
Appendix

How does the EdTech Tulna evaluation work?

FRAMEWORKS

EdTech Tulna frameworks define a set of standards for quality design of EdTech products. A rigorous and research backed process is established and applied for the creation of various nuanced frameworks. These frameworks are use-case specific to enable transparent and precise, high stakes decision making. The process includes considering existing research literature, feedback from the ground on multiple stakeholder needs and an appreciation for the quality of solutions currently supplied in the ecosystem.

The frameworks are categorized along the three dimensions of Content Quality, Pedagogical Alignment, and Technology & Design to capture a holistic view of the quality of the product design. The frameworks are also made available at varying levels of depth for varying stakeholder needs and range from supporting governments and institutions in making high stakes, rank based, adoption decisions, to providing a brief overview of the key criteria to be considered while designing a product.

TOOLS

Each Tulna framework is accompanied by a toolkit that is specifically designed to guide experts to evaluate EdTech products. These toolkits are customized to the type of EdTech solution, grades, subjects, to drive meaningful and nuanced evaluations. The tools are informed by research as well as iterative empirical study and tested for inter-rater reliability and validity. A typical toolkit consists of rubrics and reviewer guidelines to enable evaluators to interpret the framework and conduct unbiased evaluations. Each criterion within the framework is rated along a three-point rating scale - ‘Exemplary’, ‘Valuable’, and ‘Potential to Improve’ - indicating the level of alignment with expectations laid out in the framework. Toolkits include supporting materials - videos, templates, and example illustrations - to guide experts while conducting evaluations.

PROCESS

Each product goes through a rigorous review process that takes approximately 160 hours for four grade ranges K-2, 3-5, 6-8, and 9-10. Each review team is designed to be independent and neutral. A typical expert review team consists of 3-4 members who are subject matter experts, instructional designers, user-interaction experts, user-experience design experts, and professionals with experience in teaching and implementing EdTech in field settings. Each review team has an anchor of at least one experienced evaluator.

Each member of the expert review team undertakes a two-week long intensive training on understanding the frameworks and the subsequent application of its toolkits to conduct evaluations. For each product, the review team applies a systematic sampling strategy and decides the representative learning units that will be reviewed. The team collectively reviews a subset of the learning units to check for convergence and establish inter-rater reliability. Team members then individually review the remaining learning units. The team finally meets to synthesize key points and takeaways of each review and elaborates their reviews into an in-depth report, which is overseen by the experienced evaluator.

The role of the product company is limited to an initial demo which supports the review team to deepen their appreciation of the intended use of the product, and its scope. The product company is then provided the final reviews and their unedited responses are published alongside the expert evaluations on the Tulna evaluation center.